Clear Search sequence regions


Earlier studies have shown that in herpes simplex virus 1-infected cells, ICP22 upregulates the accumulation of a subset of gamma(2) proteins exemplified by the products of the U(L)38, U(L)41, and U(S)11 genes. The ICP22-dependent process involves degradation of cyclins A and B1, the stabilization and activation of cdc2, physical interaction of activated cdc2 with the U(L)42 DNA synthesis processivity factor, and recruitment and phosphorylation of topoisomerase IIalpha by the cdc2/U(L)42 complex. Activation of cdc2, the first step in the process, is a key function of the mitotic phosphatase cdc25C. To define the role of cdc25C, we probed some features of the ICP22-dependent pathway of upregulation of gamma(2) genes in cdc25C(-/-) cells and in cdc25C(+/+) cells derived from sibling mice. We report that cyclin B1 turned over in cdc25C(+/+) or cdc25C(-/-) cells at the same rate, that cdc2 increased in amount, and that U(S)11 and U(L)38 proteins and infectious virus accumulated in smaller amounts than in wild-type infected cells. The reduction in U(L)38 protein accumulation and virus was greater in cdc25C(-/-) cells infected with virus lacking ICP22 than in cells infected with wild-type virus. We conclude that cdc25C phosphatase plays a role in viral replication and that this role extends beyond its function of activating cdc2 for initiation of the ICP22-dependent cascade for upregulation of gamma(2) gene expression.

Citation

Benjamin A Smith-Donald, Lizette O Durand, Bernard Roizman. Role of cellular phosphatase cdc25C in herpes simplex virus 1 replication. Journal of virology. 2008 May;82(9):4527-32

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 18272575

View Free Full Text